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Abstract

This paper studies how mutual funds- as the largest investor in stock market- matter

for the equilibrium stock returns. Unlike direct household investors, fund managers

face a distinct risk as an investment intermediary, namely fund flow risk: Fund flows

are uncertain to managers, affect managers’ income, and may force managers to liq-

uidate their asset holdings. In an equilibrium model with fund mangers, this paper

shows that aggregate shocks to fund flows enter the stochastic discount factor (SDF)

in addition to the aggregate market returns. Empirically, the implied SDF explains

the average returns of 50 size, book-to-market, liquidity, and flow risk portfolios jointly

and separately. In fact, the aggregate shocks to fund flows subsume explanatory power

of the aggregate market returns across different model specifications. Moreover, the

magnitude of the price of risk for the aggregate shocks to fund flows is very similar

across the different sets of test assets, supporting the prediction that the aggregate

shocks to fund flows are an important component of the SDF in stock market.
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I. Introduction

Open-end mutual funds have become more important in financial markets over time. 1

French (2008) and Stambaugh (2014) document gradual capital shifts from direct investors

to institutions, especially to open-end funds, in the U.S. common equity market. As a result,

open-end mutual funds hold the largest share of the equity market, 28% in 2017, a marked

increase from 4% in 1980, whereas direct investors hold 21% in 2017, a substantial decrease

from 48% in 1980.2 This paper attempts to study a new structure of equilibrium asset

returns in the presence of open-end mutual fund managers in the asset market.

Open-end mutual funds face an inherent source of risk as an investment intermediary,

namely fund flow risk. Fund flow is uncertain to fund managers because it is fund investors

who decide when to buy/sell their fund shares. The uncertainty of fund flows matters to

fund managers for at least two reasons. First, the fund flows directly affect the fund size

and therefore part of the manager’s income.3 Second, fund flows restrict managers from

being able to time their purchases/liquidations of portfolio holdings at their discretion. In

fact, open-end mutual funds allow daily redemptions and managers are required by law to

pay back the fund investors within seven working days. The restriction on timing is the key

difference between direct investors and fund managers as an investment intermediary.

Investors are also concerned about episodes where liquidity is low. Investors value secu-

rities based on their net returns after liquidating costs and require high compensations for

holding securities with high levels of liquidating costs. In addition, traders also care about

liquidity risk: they fear uncertainty and the variability of the liquidity level that liquidity

may disappear when they need it. During market downturns, investors have high marginal

utility and the ability to sell easily is especially valuable such that they are willing to accept

a lower expected return for a security that is liquid during market downturns.

Fund managers care more about liquidity risk because they are subject to fund flow

1As of 2017, $50 trillion of assets are managed by open-end mutual funds worldwide based on the
Investment Company Institute (ICI) Statistics released in 2018 Q2.

2For the time-series plot of the holdings and the full description of the data, see Appendix A.
3Ma, Tang, and Gomez (2018) analyze the compensation contracts of individual portfolio managers for

4,500 U.S. mutual funds. They find that the manager compensation is explicitly linked to the profitability
of the investment advisor for 51% of the funds, which depends on the advisory fee rates and the total asset
under management (AUM). For 20% of the sample funds, the manager compensation is directly linked to
the fund’s AUM.
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risk and may have to liquidate their portfolio holdings when the fund investors want their

money back. Mutual funds hold only 3-6% of cash relative to total net assets, distressed

funds typically cannot borrow, and the Investment Company Act of 1940 prohibits some

mutual funds from short selling (see Coval and Stafford (2007)), so redemptions often require

selling securities. Constantinides (1986) makes the point that investors accommodate large

transaction costs by drastically reducing the frequency and the volume of the trade. Fund

managers, however, may not be able to time the transactions and require a high liquidity

premium for a security that is illiquid when they may have to sell due to sudden and large

fund outflows.4

This paper focuses on how fund flow risk and liquidity risk affect asset prices in equi-

librium. To understand how they interact, I develop an equilibrium asset pricing model. I

consider a pure exchange, overlapping generations economy that is populated by two classes

of investors, fund managers and direct investors, both concerned about liquidating cost. The

fund managers have CARA preferences over the end-of-period compensation that depends

on the fund return and the fund flow at the end of the period. Managers receive the fund

flow that depends on the fund performance and a flow shock, and the shock can be correlated

across funds. The direct investors have CARA preferences over the end-of-period return of

their own investment.

I solve the equilibrium asset pricing model and the result of the model implies that

aggregate innovations in fund flows enter the stochastic discount factor (SDF) in addition to

the aggregate market returns. Intuitively, during sudden and large aggregate fund outflows,

an asset with high returns or low selling costs is particularly attractive to fund managers.

Specifically, expected returns are driven by two factors in equilibrium: 1) liquidity-

adjusted market beta defined as the co-movement of net returns, i.e., returns net of liquidat-

ing costs of the security, with the net market returns, i.e., market returns net of aggregate

market liquidity costs, and 2) fund flow beta defined as the co-movement of net returns

with the aggregate unexpected fund flows. The fund flow beta is the main focus of this

4Recently, the U.S. Securities and Exchange Commission (SEC) has adopted new rules that will be
effective as of December 2018 or June 2019 (depending on the requirement) to reduce the risk that funds
will be unable to meet their redemption obligation. It will require open-end funds to establish a liquidity
risk management program, disclose certain information on the fund’s liquidity risk, and notify the SEC if
illiquid asset exceeds 15 percent of holdings unless they qualify for an exemption from the SEC.

2



paper. It implies that a security with low returns (high liquidating costs) during the aggre-

gate unexpected fund outflows must provide high compensation for investors in equilibrium.

The model also implies that the fund flow beta becomes more important for predicting the

equilibrium expected returns as the share of the aggregate fund size increases in the market.

If there are no fund managers in the economy, my model collapses to one factor model of

liquidity adjusted market beta, presented in Acharya and Pedersen (2005). Alternatively, if

investors are not concerned about the liquidity cost and fund managers gain utility from the

excess returns over the benchmark, it reduces to the two-factor model in Brennan (1993).

If aggregate fund flows are an important component of the SDF, then it should at least

price the stocks that fund managers actively trade. Size and book-to-market are presumably

two of the most well-established characteristics that differentiate the risk profiles of active

mutual funds. For instance, Morningstar summarizes the holdings style of every equity

mutual fund based on the two criteria of size and book-to-market. In addition, I also explore

cross-sections that may have different attributes along the liquidity and fund flow risk that

fund managers are concerned about. Namely, I construct 25 portfolios sorted by size and

book-to-market and 25 portfolios by liquidity and fund flow beta to directly test the main

economic mechanism of the asset pricing model in the data.5

I find that the model explains the cross-sectional average returns jointly when the 50 test

portfolios are used simultaneously. The price of risk for fund flow beta is highly significant

and positive across different model specifications: with/without liquidity-adjusted market

beta and controlling for three Fama-French factors with a momentum factor. In contrast,

the liquidity-adjusted market beta is subsumed by the fund flow beta: the price of risk for

liquidity-adjusted market beta is insignificant when the fund flow beta is included in the

model and the overall fit of the model, measured by cross-sectional R2, stays identical when

only the fund flow beta remains in the model, removing the liquidity-adjusted market beta.

In asset pricing tests using the test portfolios separately, I highlight that the magnitude

of the price of risk for fund flow beta is very similar across the different sets of test assets.

5For the sort purpose, I take into account the fact that the fund flow betas may change over time and are
measured imprecisely, and model them as a function of characteristics that help to forecast fund flow risk
going forward. In addition, I improve the measurement of the fund flows by cross-validating two independent
mutual fund databases to filter out inconsistencies and to ensure complete coverage of share classes in each
fund.
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In contrast, the price of risk for liquidity-adjusted market beta fluctuates and even flips sign

across the different portfolios. This supports the prediction that aggregate innovations in

fund flows are an important component of the SDF.

The fund flow risk premium is estimated to be sizable, particularly for illiquid stocks.

Conditional on the liquidity risk, the annual risk premium attributed to the fund flow risk is

5.28% for illiquid stocks and 2.90% for liquid stocks during the sample period of 1991-2013.

After controlling for the three Fama-French factors with a momentum factor, the annual

fund flow risk premium is 3.17% for illiquid stocks and 1.74% for liquid stocks. The large

fund flow risk premium in illiquid stocks is consistent with the model in that fund flow risk

is a bigger concern for illiquid stocks and that managers require higher compensation to hold

the illiquid assets considering the fund flow risk.

My paper intersects several strands of literature including intermediary asset pricing,

mutual fund flows, and liquidity. My paper is the first to explore aggregate shocks to fund

flows as a pricing kernel in the U.S. equity market, motivated from a fact that mutual fund

managers are the largest investor in the equity market. Also, while there is an extensive

studies on mutual fund flows and liquidity separately, this paper is the first to look at

the interaction of mutual fund flows and liquidity to explain cross-sectional average returns

estimating flow risk premium conditional on liquidity from an asset pricing model with fund

flow and liquidity components in it.

The empirical side of intermediary asset pricing is relatively new. Adrian, Etula, and

Muir (2015) first test intermediary SDF in cross-sectional asset pricing and find that shocks

to the leverage of security broker-dealers explain the average returns of 43 equity and bond

portfolios. More recently, He, Kelly, and Manela (2017) show that shocks to the equity

capital ratio of primary dealer price more sophisticated asset classes such as derivatives,

commodities and currencies. Koijen and Yogo (2019) propose an asset pricing model with

heterogenous asset demand to also match institutional and household stock holdings. In

theoretical intermediary asset pricing, Brennan (1993), Cuoco and Kaniel (2011), He and

Krishnamurthy (2012a), Kaniel and Kondor (2013), Basak and Pavlova (2013), and Vayanos

and Woolley (2013) present equilibrium models to show how intermediaries may affect asset

prices. In this paper, I bring in open-end mutual fund managers to the otherwise standard
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liquidity-adjusted model of Acharya and Pedersen (2005) to understand how interaction of

fund flow and liquidity risk affects asset prices.

Mutual fund flows have attracted extensive literature on the price impact of institutional

flows. For instance, Warther (1995), Edelen and Warner (2001), Goetzmann and Massa

(2003), Teo and Woo (2004), Coval and Stafford (2007), and Ben-Rephael, Kandel and Wohl

(2011) find contemporaneous price pressure from mutual fund flows. Lou (2012) shows that

expected flow-induce trading can predict the future returns of the mutual fund stocks. These

papers corroborate the importance of the mutual fund managers to understand asset prices,

however, none explores the aggregate fund flows as a pricing kernel or studies fund flow risk

premium interacting with liquidity risk across a wide range of cross-sections.

Amihud and Mendelson (1986), Vayanos (1998), Chordia, Roll, and Subrahmanyam

(2001a), Amihud (2002), Pastor and Stambaugh (2003), and Acharya and Pedersen (2005)

among many others look at how average liquidity or liquidity risk is priced. Lynch and

Tan (2011) present a partial equilibrium framework that the liquidity premium is large if

the transaction costs co-vary negatively with wealth shocks. My model emphasizes that the

liquidity risk is particularly important for the fund managers since the managers cannot time

the transaction during sudden and large fund outflows. Empirical results also support this:

the fund flow risk premium of illiquid stocks is almost twice that of liquid stocks.

The paper is organized as follows. Section II presents the equilibrium model. Section

III describes data and empirical measures. Section IV discusses characteristics of portfolios

sorted by liquidity and fund flow risk. Section V documents the main empirical results from

the cross-sectional asset pricing test, and Section VI concludes. The proofs and detailed

data works are in the Appendix.

II. Model

A. Economic Setup

Economy

I consider a pure exchange, overlapping generations economy that is populated by two classes

of investors: fund managers and direct investors. Each generation at time t consists of I
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homogeneous managers indexed by i ∈ {1, 2, ..., I} and J homogeneous direct investors

indexed by j ∈ {1, 2, ..., J}. Manager i starts off with an initial asset under management,

Ai,t, and direct investor j has an initial asset Aj,t at time t, and both classes of investors live

for two periods from t to t + 1 and trade securities in period t and t + 1.

Liquidity is an elusive concept, which can refer to various costs associated with tem-

porary price movement including brokerage fees and bid-ask spread. Broadly, it includes

any trading-related frictions that make the actual transaction price deviate from the true

underlying security value. Throughout the paper, I consider liquidity cost as a selling cost

of a security per trade.

There are K risky securities in positive net supply indexed by k ∈ {1, 2, ..., K}, as well as

a risk-free asset in perfectly elastic zero net supply which pays an interest rate rf . The risky

security is a claim on its dividends and incurs a liquidating cost when selling at the end of

the period. As in Acharya and Pedersen (2005), I assume investors sell all their securities at

the end of the period t + 1. Dividends and liquidity cost vary over time following the AR(1)

process to capture their persistence

Dt = D̄ + ρD(Dt−1 − D̄) + ηD
t , (1)

Ct = C̄ + ρC(Ct−1 − C̄) + ηC
t , (2)

where Dt and Ct are K×1 vectors of dividends and liquidity cost, respectively, ρD, ρC ∈

[0,1], E[ηD
t ] = E[ηC

t ] = 0, V ar[ηD
t ] = ΣD, V ar[ηC

t ] = ΣC , and E[ηD
t (ηC

t )T ] = ΣCD.

I define K × 1 gross return, rt+1, K × 1 relative liquidity cost, ct+1, and K × 1 net return

after liquidity cost, rc
t+1, with each security k ∈ {1, 2, ..., K} as

rk,t+1 =
Pk,t+1 + Dk,t+1

Pk,t

, ck,t+1 =
Ck,t+1

Pk,t

, (3)

rc
k,t+1 = rk,t+1 − ck,t+1, (4)

where Pk,t is the equilibrium stock price for security k at time t. In a competitive equilibrium,

investors maximize the expected utility over their portfolio choice, taking the price as given.

The equilibrium price is determined such that the asset market clears.
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I model fund flows as a linear function of the fund performance and flow innovation 6

fi,t+1 ≡
Fi,t+1

Ai,t

= α0 + α1(r
c
i,t+1 − rc

M,t+1) + ηi,t+1, (5)

where Fi,t+1 is the end-of-period fund flow in dollars to fund i, Ai,t is the initial asset of the

fund i, rc
i,t+1 ≡ xT

i,t(rt+1 − ct+1) is fund i’s return net of liquidity cost generated from K × 1

beginning-of-period portfolio weight, xi,t, rc
M,t+1 ≡ xT

M,t(rt+1 − ct+1) is the market return net

of liquidity cost generated from K×1 beginning-of-period market portfolio weight xM,t, α1 is

the common fund flow sensitivity to the fund performance, ηi,t+1 is the fund flow residual to

the fund i at the end of the period. All managers use the market portfolio as the benchmark.

Fund Manager’s Incentives

The fund managers have CARA preference over the end-of-period compensation. Fund

manager i chooses a portfolio weight, xi,t, at the beginning of the period and is constrained

to invest all assets in the risky securities. The manager i’s portfolio choice problem is written

as

max
xi,t

Et [Yi,t+1] −
bI

2
V art [Yi,t+1] − λ

(
xT

i,t1 − 1
)
, (6)

where bI is the coefficient of constant absolute risk aversion common to all managers, λ is

the Lagrange multiplier associated with the constraint that the managed portfolio is entirely

invested in the risky securities, 1 is K×1 unit vector.

I model the manager i’s compensation, Yi,t+1, as a function of two parts similar to Koijen

(2014), a constant base salary and a variable component. The first part is a constant base

salary proportional to its initial asset under management. The second part depends on its

end-of-period fund value, which fluctuates due to the end-of-period fund returns and fund

6This is a reduced-form way of modelling various frictions that may constrain households from trading
directly in the stock market, for instance high trading costs, time constraint, economies of scale. Consider
another type of investors in the economy, indirect investors, who can only invest through the fund managers.
The indirect investors receive an endowment at the beginning of the period, delegate part of the endowment
to the fund managers based on fund performance and other reasons (residual term), and invest the rest in the
risk-free asset. For tractability, I model fund flow as a function of contemporaneous return. This simplifying
modelling assumption is relaxed during the empirical estimation of the flow innovation.
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flows. This implies that the manager i’s maximization problem in (6) can be rewritten as

max
xi,t

Et

[
rc
i,t+1 + fi,t+1

]
−

bI

2
V art

[
rc
i,t+1 + fi,t+1

]
− λ

(
xT

i,t1 − 1
)
. (7)

The fund manager i chooses portfolio weight xi,t at the beginning of the period t that

maximizes the conditional mean-variance utility of compensation in (7), which depends on

the time-varying net return and fund flow at the end of the period.

Direct Investor’s Incentives

Direct investors have CARA preference with constant absolute risk aversion and derive utility

from the performance of their own investment at the end of the period, similar to the capital

asset pricing model in Sharpe (1964) and Lintner (1965). The direct investor j’s portfolio

strategy problem is written as

max
xj,t

Et

[
rc
j,t+1 − rf

]
−

bJ

2
V art

[
rc
j,t+1 − rf

]
, (8)

where rc
j,t+1 ≡ xT

j,t (rt+1 − ct+1) is direct investor j′s return net of liquidity cost generated

from K × 1 beginning-of-period portfolio weight, xj,t, and bJ is the coefficient of absolute

risk aversion.

B. Optimal Portfolio Strategies

All investors choose their optimal portfolios to maximize the utility in (7) or in (8). The full

derivation is in Appendix B.

Fund Managers

The optimal portfolio choice of manager i at time t is written as

x∗
i,t =

1

bI(1 + α1)
Σ−1

t Et

[

rc
t+1 −

1

1 + α1

λ1

]

︸ ︷︷ ︸
Mean-variance

+
α1

1 + α1

xM,t

︸ ︷︷ ︸
Benchmark

−
1

1 + α1

Σ−1
t Covt

[
rc
t+1, ηi,t+1

]

︸ ︷︷ ︸
Fund flow

, (9)

where Σt ≡ V art

[
rc
t+1

]
.
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The first term, 1
bI(1+α1)

Σ−1
t Et

[
rc
t+1

]
, resembles the standard portfolio choice of risk-return

tradeoff but with return net of liquidity cost. The manager’s demand is high for a security

with a high expected net return relative to its variability, scaled by the risk aversion of the

manager, bI . The second term, α1

1+α1
xM,t, comes from the fund flows that depend on the rel-

ative performance over the market benchmark. The third component, Σ−1
t Covt

[
rc
t+1, ηi,t+1

]
,

is the main distinguishing attribute of the manager’s portfolio choice that plays a vital role

in understanding economic mechanisms. Manager i’s demand for a security k depends on

the covariance of its net returns with the unexpected fund flows to the fund i. If a security’s

returns decrease or liquidity costs increase during the negative states of the unexpected fund

outflows, the manager has a low demand for the security.

When the risk aversion of the fund manager (bI) goes to infinity and the flow sensitivity

to the relative performance (α1) goes to zero, the managers will still have a positive demand

for stocks, in particular, those that provide a hedge against the aggregate fund flows. In

contrast, if the flow sensitivity (a1) goes to infinity, investors will hold exactly the market

portfolio. When the volatility of the fund flow innovation and the flow sensitivity go to zero,

then the demand collapses to Acharya and Pedersen (2005).

Direct Investors

Direct investor j’s optimal portfolio strategy equals the standard mean-variance portfolio

choice that exploits the risk-return tradeoff but with return net of liquidity cost

x∗
j,t =

1

bJ

Σ−1
t

(
Et

[
rc
t+1

]
− rf1

)
. (10)

C. Equilibrium Asset Prices

Equilibrium in the economy is defined in a standard way. Both fund managers and direct

investors hold their optimal portfolios and the security market clears. To clear the market at

each time t, the aggregate demand for each security k ∈ {1, 2, ..., K} from I fund managers
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and J direct investors must equal supply

I∑

i=1

Ai,tx
∗
i,t +

J∑

j=1

Aj,tx
∗
j,t = AM,txM,t, (11)

where AM,t ≡
∑I

i=1 Ai,t +
∑J

j=1 Aj,t is the total asset of the aggregate market at time t, and

x∗
i,t and x∗

j,t is the optimal portfolio choice of manager i and direct investor j in (9) and (10),

respectively.

Proposition 1. (The Flow and Liquidity Asset Pricing Model) The equilibrium

expected net return of security k is given by

Et

[
rc
k,t+1

]
= s0 + s1Covt(r

c
k,t+1, r

c
M,t+1) + Covt(r

c
k,t+1, η̄t+1). (12)

where η̄t+1 is the aggregate innovations in fund flows

η̄t+1 =
I∑

i=1

Ai,t

AI,t

ηi,t+1, (13)

and AI,t ≡
∑I

i=1 Ai,t is the aggregate amount of asset under I managers.7

The expected return at the end of the period depends on two components in the flow

and liquidity asset pricing model. The first component, covariation of net returns with net

market returns, corresponds to the liquidity-adjusted market beta in Acharya and Pedersen

(2005). It consists of the standard market beta and three liquidity betas: return sensitivity

to market liquidity, liquidity sensitivity to market returns, and commonality in liquidity with

the market liquidity.

The flow beta in the second term is the model’s main contribution to explaining the cross-

sectional expected returns. It is closely related to the managers’ demand for security k in (9),

but now it is the aggregate innovations in fund flows, η̄t+1, that matters to the equilibrium

asset prices, instead of the individual flow innovation. If a security generates low returns

or incurs high liquidity costs during large aggregate outflows, then the risk premium of the

7s0 is weighted average of the risk-free rate and the shadow price of full investment in risky assets, s1

(s2) is the share of direct investors (mutual funds) in the economy scaled by the risk aversion of managers,
the risk aversion of direct investors, and the fund flow sensitivity to performance. The full derivation is in
Appendix B.
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security must be high in equilibrium.

When thinking of gross returns as the left-hand side variable in (12), the asset pricing

model also includes the effect of liquidity on the average return (before liquidating cost). If

the end-of-period trading cost of security k is expected to be high, then the compensation

for holding the security k should be high in equilibrium. The expected liquidity cost affects

the expected return by one to one because investors sell all their securities at the end of the

period in the model.

Proposition 2. (Price of risk for the flow beta) Suppose the risk aversion of the fund

managers, bI , the risk aversion of direct investors, bJ , and the flow performance sensitivity

α1 are positive. Then the price of risk of the flow beta increases with the size of the mutual

funds in the economy while the price of risk of the market beta net of liquidity decreases with

the size of the mutual funds in the economy

∂s1

∂AI,t

< 0,
∂s2

∂AI,t

> 0. (14)

The proposition states that the flow beta sensitivity to explain average returns increases as

the share of the aggregate fund size increases in the market. The derivation is in Appendix

B.

The flow and liquidity asset pricing model in (12) reduces to the models studied in the

literature when I change part of the setup in the economy. If there is only one class of

standard direct investor in the economy, it collapses to the liquidity-adjusted CAPM in

Acharya and Pedersen (2005). Alternatively, if investors do not pay the liquidating cost

and fund managers derive utility from excess returns over the benchmark, then the model

reduces to the two factor model in Brennan (1993) with the two factors being covariance

with the market returns and covariance with the benchmark returns.

An Unconditional Asset pricing model I derive an unconditional version of the flow

and liquidity asset pricing model in (12) to explore the cross-sectional prediction of the

model. An unconditional version can be derived under the assumption that the dividends

and the liquidity costs in (1) and (2) are independent over time, that is ρD = ρC = 0.

However, empirically illiquidity costs are highly persistent over time. Thus, I instead assume

11



that conditional covariances in the flow and liquidity asset pricing model are constant over

time.8 The unconditional version of the equilibrium model for each stock k is written as

E
[
rc
k,t

]
= s0 + s1Cov

(
rk,t − εc

k,t, ε
r
M,t − εc

M,t

)
+ s2Cov

(
rk,t − εc

k,t, ε
η̄
k,t

)
, (15)

where εX is the shock to each variable X, specifically, εc
k,t ≡ ck,t−Et−1[ck,t], εη̄

t ≡ η̄t−Et−1[η̄t],

εr
M,t ≡ rM,t−Et−1[rM,t] and εc

M,t ≡ cM,t−Et−1[cM,t]. To obtain less noisy estimates, I focus on

the portfolio-level test of the flow and liquidity asset pricing model. For notational simplicity,

I rewrite the unconditional asset pricing model in (15) for each portfolio p as

E [rp,t − cp,t − rf,t] = α + λMKTcβMKTc
p + λFLOW βFLOW

p , (16)

where the market beta adjusted for liquidity is defined as βMKTc
p ≡ βrr

p +βcc
p −βrc

p −βcr
p with

βrr
p =

cov(rp
t , ε

r
M,t)

var(εr
M,t − εc

M,t)
, βcc

p =
cov(εc

p,t, ε
c
M,t)

var(εr
M,t − εc

M,t)
, (17)

βrc
p =

cov(rp
t , ε

c
M,t)

var(εr
M,t − εc

M,t)
, βcr

p =
cov(εc

p,t, ε
r
M,t)

var(εr
M,t − εc

M,t)
, (18)

and the flow beta is defined as βFLOW
p ≡ βrf

p − βcf
p with

βrf
p =

cov
(
rp,t, ε

η̄
t

)

var
(
εη̄

t

) , βcf
p =

cov
(
εc

p,t, ε
η̄
t

)

var(εη̄
t )

, (19)

and λMKTc is the common price of risk for βrr
p , βcc

p , βrc
p , and βcr

p and λFLOW is the common

price of risk for βrf
p and βcf

p . The unconditional flow and liquidity asset pricing model in

(16) is the main focus of the empirical tests in the next sections.

III. Data and empirical measures

In this section, I estimate all empirical components needed to directly compute the six risk

measures of each portfolio that underly the flow beta and the liquidity-adjusted market

beta in (16). In Section IV.A, I compute the liquidity cost, i.e. the per-share selling cost,

8An alternative method that gives the same unconditional model is to assume the price of risks are
constant over time and use the fact that for any random variable X and Y, E [Covt(X,Y )] = Cov(X −
Et(X), Y − Et(Y )).
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for each security k in each month t by the normalized Amihud (2002) illiquidity measure as

employed in Acharya and Pedersen (2005). In Section IV.B, I estimate the monthly aggregate

innovations in the mutual fund flows from flow-performance panel regression. In Section

IV.C, I model the flow beta of each security as a function of its observable characteristics

that help to predict the flow beta. In Section IV.D, I construct a set of 50 test portfolios:

25 portfolios sorted by illiquidity and predicted flow beta plus 25 size and book-to-market

portfolios. For each portfolio, I compute the portfolio-level illiquidity and portfolio returns.

In Section IV.E, I estimate the innovations in the portfolio illiquidity, the innovations in the

market illiquidity, and the innovations in the market returns. These complete the necessary

steps to estimate the two factors in the flow and liquidity asset pricing model for each of the

50 test portfolios.

A. Illiquidity cost

I employ the daily stock returns and volume data of ordinary common shares listed on the

New York Stock Exchange (NYSE) and NYSE American (formerly AMEX) from the Center

for Research in Security Prices (CRSP) to estimate the illiquidity cost of the stocks from 1991

to 2013 following the procedure in Acharya and Pedersen (2005). I do not include NASDAQ

stocks because the volume data is overstated by including interdealer trades, unlike NYSE

and NYSE American. My sample starts in 1991 to be consistent with the sample period of

monthly mutual fund data that I will describe in detail in the next subsection. To avoid

survivorship bias, I use the delisting return if the return on the delisting date is missing, as

in Shumway (1997).9 The 30-day T-bill rate is also from CRSP.

I measure the illiquidity of stock k in month t as in Amihud (2002)

ILLIQk,t =
1

Daysk,t

Daysk,t∑

d=1

|rk,t,d|
vk,t,d

, (20)

where rk,t,d is the return and vk,t,d is the dollar volume (in millions) of stock k in month t

on day d. The intuition behind this measure is that a stock k is illiquid if its stock price

9I assign -30% to the stock return on the delisting date if the delisting code is 500 (reason unavailable),
520 (went to OTC), 551-573 and 580 (various reasons), 574 (bankruptcy), and 584 (does not meet exchange
financial guidelines).
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changes a great deal in response to the trading volume. That is, stock k is illiquid in month

t if ILLIQk,t is high.

I normalize the Amihud illiquidity measure to take into account that 1) the illiquidity

measure has a strong downward trend as the value of the dollar price decreases over time

and 2) the illiquidity measure is the ratio of return over dollar price, not dollar cost over

dollar price as specified in the asset pricing model in (4). To accommodate these issues, I

normalize the illiquidity measure by

ck,t = min (0.25 + 0.30 × ILLIQk,t × PM,t−1, 30) . (21)

I multiply by the ratio of market portfolio capitalization, PM,t−1, to make the series

stationary over time. The coefficients of 0.25 and 0.3 are chosen to make the cross-sectional

distribution of size portfolios of ck,t match the level and variance of the effective half spread,

i.e., the difference between the transaction price and the midpoint of the prevailing bid-ask

quote, reported by Chalmers and Kadlec (1998).10

Finally, the illiquidity cost is capped from the minimum of 0.25% to the maximum of

30%. During the period of 1991 to 2013 in my sample, the average illiquidity cost of 10 size

portfolios ranges from 0.25% to 2.19% with a mean of 0.52% and a standard deviation of

0.57%.11

B. Mutual fund flows

Sample criteria

I obtain the mutual funds’ monthly returns, total net assets (TNA), and other fund char-

acteristics from CRSP and Morningstar Direct from January 1991 to December 2013. My

sample starts from January 1991 as the CRSP database records monthly total net assets

from January 1991. The monthly inflation index is also from CRSP. I fully describe the

10For the market portfolio, I use all stocks with a beginning-of-month price between $5 and $1000 and
with at least 15 days of both returns and dollar volumes in the month. To make sure that my results are
not driven by using different normalizations of the illiquidity cost, I use the same definition of PM,t−1 and
the same coefficients of 0.25 and 0.30 from Acharya and Pedersen (2005).

11Chalmers and Kadlec (1998) report the effective half spreads of 10 size portfolios ranging from 0.29%
to 3.41% with a mean of 1.11% from 1962-1991. Similarly in Acharya and Pedersen (2005), the effective half
spreads of 10 size portfolios are on average 1.24% with a standard deviation of 0.37%.
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detailed procedure for merging the two mutual fund databases and the construction of the

final mutual fund dataset in Appendix E.

There are a few notable advantages in utilizing the CRSP and Morningstar mutual fund

databases together. First, I increase the accuracy of the fund returns and total net assets,

which are essential to estimate the mutual fund flows, by cross-checking between CRSP and

Morningstar. Second, the fund-level aggregate TNA is readily available in Morningstar, with

which I can confirm that a fund is not missing a share class with significant size by comparing

the sum of TNA across share classes in CRSP and the fund-level aggregate TNA.

To select my sample, I keep funds that are completely matched between CRSP and

Morningstar following Pastor, Stambaugh, and Taylor (2015).12 I use the fund net returns,

TNA, and expense ratio from CRSP. In case of a missing expense ratio, I substitute it with

the median during the sample period within the share class following Koijen (2014). 13 For

mutual funds acquiring other funds, I deduct the amount of acquiring TNA in the acquisition

month following Lou (2012). For mutual funds that are merged with other funds, I drop the

fund-months if CRSP keeps the data of the merged funds even after the merger date.

I aggregate across share classes to construct a fund-level dataset.14 For each month, I

take the sum of TNA across subclasses and I take the TNA-weighted average of fund net

returns and annual expense ratios. I compute the monthly gross fund return as the sum of

the monthly net fund return plus 1/12 of the annual expense ratio. I exclude the fund-month

if the maximum expense ratio across share classes during the month is larger than 4%.

In order to avoid fluctuations in fund-level TNA over time due to a missing share class

in the middle of the time-series, I change fund-month TNA to missing if any share class is

missing TNA in the month. Also I cross-check if the CRSP database is missing any share

class of significant size: if the aggregate sum of TNA across share classes in CRSP differs by

more than 50% of the fund-level aggregate TNA provided by Morningstar, I drop the fund.

I use only actively managed domestic equity mutual funds to be consistent with the

12I define a fund as completely matched if all share classes belonging to the fund are well matched. Each
share class is well matched if and only if 1) the 60th percentile (over the available sample period) of the
absolute value of the difference between the CRSP and Morningstar monthly fund returns is less than 5 basis
points and 2) the 60th percentile of the absolute value of the difference between the CRSP and Morningstar
monthly total net assets is less than $100,000.

13If the expense ratio is negative, I keep it as missing.
14This is to avoid biased results by counting the returns of subclasses multiple times: among subclasses,

the fee structures are different, however, the gross returns are identical.
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Table 1: Summary statistics of mutual funds and aggregate innovations

The table shows the summary statistics of the final sample from the CRSP stocks and CRSP and Morningstar
mutual funds from 1991-2013. In Panel B, innovations in fund flows is the sum of the time-fixed effect and the
idiosyncratic residual of fund flows, η, from the flow performance regression in (23). In Panel C, aggregate
innovations in fund flows is the AR(1) residual of the TNA-weighted average of innovations in fund flows
in Panel B in (24). Innovations in market returns is AR(2) residual of value-weighted market returns with
additional predictors of market returns described in subsection E. Innovations in market illiquidity is the
residual of the normalized value-weighted illiquidity in AR(2) as specified in (29).

Mean Std. dev. p10 p25 p50 p75 p90

Panel A: Mutual funds
TNA (in mil $) 1493 4987 39 87 264 914 2795
Monthly gross fund returns (%) 0.75 5.02 -5.48 -1.7 1.18 3.62 6.26
Monthly expense ratios (%) 0.1 0.04 0.05 0.08 0.09 0.12 0.14
Monthly fund flows (%) -0.07 2.81 -2.85 -1.43 -0.4 0.87 3.19

Panel B: Fund flow innovations
Innovations in fund flows (%) -0.06 2.3 -2.33 -0.96 -0.18 0.73 2.37
Time-fixed effect (%) -0.06 0.41 -0.57 -0.26 -0.09 0.16 0.46
Idiosyncratic residual of fund flows (%) 0.00 2.26 -2.21 -0.89 -0.1 0.77 2.35

Panel C: Aggregate innovations
Aggregate innovations in fund flows (%) 0.00 0.46 -0.47 -0.26 -0.03 0.22 0.5
Innovations in market returns (%) 0.00 3.96 -5.07 -2.22 0.43 2.67 4.54
Innovations in market illiquidity (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

compensation function of fund managers in the model whose variable salary depends on the

relative performance over their benchmarks in the US common equity market. I keep the

active domestic equity funds by excluding index funds, bond funds, international funds, sec-

tor funds, target funds, real estate funds, and other non-equity funds using the Morningstar

category, Primary prospectus benchmark, and Enhanced index from Morningstar.

I require lagged total net assets to be bigger than $15 million in 2011 dollars following

for instance Elton, Gruber, and Blake (2001). This alleviates concerns about having a too

large fund flow mainly due to a small TNA in the denominator of the fund flow, which I

define in (22). I require a fund to have at least 36 months of non-missing fund flows and

fund returns to estimate innovations in fund flows with reasonable precision in the flow-

performance regression in (23).

Finally, I have 1,511 distinct mutual funds and 151,736 fund-month observations in my

final sample to estimate innovations in fund flows. The summary statistics of the final mutual

fund sample are in Table 1 Panel A.
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Innovations in mutual fund flows

I estimate the aggregate innovations in fund flows as follows. First, I compute the mutual

fund flow for each fund i in month t, fi,t, as in Chevalier and Ellison (1997), Sirri and Tufano

(1998) and others as

fi,t+1 =
Ai,t+1 − Ai,t × ri,t+1

Ai,t

, (22)

where ri,t+1 is fund i’s gross return. The fund flow, fi,t+1, measures the new external flow for

fund i from month t to month t + 1, relative to its initial fund size, excluding the increase

or decrease due to the fund return from its asset investment in the previous month.

Second, I run a flow-performance regression using all panels of the qualified mutual funds

with time-fixed effects

fi,t+1 = a0 + a1 (ri,t − rM,t) + a2fi,t + δt+1 + εi,t+1︸ ︷︷ ︸
ηi,t+1

(23)

where ri,t and rM,t is the lagged return of fund i and market, respectively.15 The time-fixed

effects capture the common components of the fund flows across mutual funds that are not

captured by the flow predictors in the flow-performance regression. This is consistent with

the flow and liquidity asset pricing model in (12) in that it is the aggregate component of

the fund flow innovations that matter for the asset prices.

In my sample from 1992-2013, a1 is estimated to be 0.098 (t-stat: 32.62), and a2 to be

0.557 (t-stat: 265.89), and a0 to be -0.80 (t-stat: -10.17). R2 is 33% when I include the time-

fixed effect as the residual term, R2 = 1−var[δt+1+εi,t+1]/var[fi,t+1]. I estimate the fund flow

innovations by the sum of the estimated time-fixed effects and the estimated idiosyncratic

errors, η̂i,t+1 = δ̂t+1 + ε̂i,t+1, for each fund i, and then take the TNA-weighted average to get

the aggregate innovations in fund flows, η̄t+1, as the flow and liquidity asset pricing model

suggests. To make sure there is no expected component in the aggregate innovations in

fund flows, I take AR(1) residual of the aggregate innovations, εη̄
t ≡ η̄t − Et−1[η̄t], from the

15For the purpose of the portfolio sort, which I describe in detail in the following subsection, I run the
flow-performance panel regression using only information available at the time of the portfolio sort each year
using mutual funds with at least 36 months of the flows and returns data. I assume liquidating costs of
mutual fund portfolio i and its benchmark portfolio are close enough to cancel each other out.

17



following equation

η̄t = zo + z1η̄t−1 + εη̄
t . (24)

Figure 1 plots the aggregate innovations in fund flows, εη̄
t , from 1992-2013. Anecdotal ev-

idence aligns with the movements of the aggregate innovations in the time-series plot. In

particular, there are several drops in the aggregate fund flows in Figure 1 during the burst

of the dot-com bubble lasting from March 2000 to October 2002. The decline from the

burst peaked in July 2002, accompanied by the Enron scandal, and this coincides with the

sharpest unexpected drop in the aggregate fund flows in Figure 1 in July 2002. During the

2008 financial crisis, there are series of aggregate outflows throughout 2008 until March 2009,

with the peak outflows in September and October 2008 in the figure. The next largest drops

appear in late 1998 when the Russian financial crisis and the collapse of Long-Term Capital

Management occurred.

I use εη̄
t in (24) as the pricing kernel of the aggregate mutual fund managers throughout

the paper and test if flow beta, computed by return and liquidity sensitivities with εη̄
t , can

price the cross-sections of average returns. In what follows, I explain how to compute the

flow beta in detail.

C. Predicted flow beta

I model the flow beta of a security as a function of its observable characteristics that help

to predict the flow beta similar to Pastor and Stambaugh (2003)

βrf
k,t−1 = ψ1 + ψ′

2Zk,t−1, (25)

where βrf
k,t−1 is the return sensitivity of security k with the aggregate innovations in fund

flows. Zk,t−1 includes four characteristics of security k computed using information available

up to month t − 1: (1) the historical flow beta estimated from t − 60 to t − 1 if at least 36

months of returns are available, (2) the cumulative return from month t− 6 to t− 1, (3) the

standard deviation of the stock’s monthly returns from month t−6 to t−1, (4) the proportion

of the stock’s shares outstanding held by mutual fund managers on aggregate in the preceding
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Figure 1: Aggregate innovations in fund flows

I compute the monthly aggregate innovations in fund flows using the qualified active domestic equity funds
from the CRSP and Morningstar mutual fund database during 1992-2013. I describe the criteria of the
qualified funds in detail in Section IV.B. I run a panel regression with time-fixed effects to estimate the
innovations in fund flows for each fund. I compute the fund flow innovation by the sum of the estimated
time-fixed effects and the estimated idiosyncratic error for each fund, and then take the TNA-weighted
average to obtain the aggregate innovations in fund flows, consistent with the flow and liquidity asset pricing
model. To make sure there is no expected component in the aggregate innovations in fund flows, I take
AR(1) residual of the aggregate innovations.

quarter.16 The intuition behind these characteristics is that stocks with different short-term

return dynamics (past cumulative return and volatility) and different mutual fund ownership

could have different flow betas. For the purpose of portfolio construction, I rewrite the return

of stock k as

rk,t = const + βrf
k,t−1ε

η̄
t + ξk,t, (26)

and substitute the flow beta βrf
k,t−1 to obtain

rk,t = const + (ψ1 + ψ′
2Zk,t−1) εη̄

t + ξk,t. (27)

I run the OLS pooled time-series and cross-sectional regression using the full panel of qualified

stocks and mutual funds to reduce the estimation error for common ψ1 and ψ2. I compute

16I use holdings data of mutual fund from Thomson Reuters S12 (formerly CDA/Spectrum). I appreciate
Doshi, Elkamhi, and Simutin for sharing the code to merge S12 with CRSP mutual funds and stock returns
databases.
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the predicted flow beta for each security k by

β̂rf
k,t = ψ̂1 + ψ̂′

2Zk,t. (28)

To avoid any biases that might come from using information that was not readily available

to investors, I update the estimation of ψ1 and ψ2 at the time of each portfolio sort at year-

end, exploiting information only available at the time of the sort. This includes re-estimation

of the aggregate innovations in fund flows using the fund flows and fund returns available

up to month t of the end of each year. I then re-estimate the rolling-window characteristics

Zk,t−1 and update the estimation of ψ1 and ψ2. Using the year-end characteristics, Zk,t, I

compute the predicted flow beta by which the security k is sorted at year-end month t. A

more detailed description of the re-estimation procedure is in Appendix C.

Table 2 presents three different sets of the estimated coefficients, ψ̂1 and ψ̂2, using data

available up to the year-end in 2004, 2008, and 2012. Historical beta is highly significant with

positive coefficients throughout the different year-ends. However, the coefficient estimates are

smaller than 1, which points to a measurement error of the historical sort beta as commonly

documented in the literature and confirms the importance of modelling the flow beta as a

function of observable characteristics that help to predict fund flow risk going forward. In

fact, sorting stocks by the predicted flow beta helps to create a wider monotonic spread of

postranking flow beta across the test portfolios compared to sorting stocks by the historical

flow beta alone. In most year-ends, stocks with high return volatility and low cumulative

return in the past 6 months have high flow beta going forward. Also, stocks held more by

mutual fund managers on aggregate as of the preceding quarter tend to have high flow beta

as in the table.

D. Portfolios

In order to study how the interaction between liquidity and flow risk affects asset prices, I

construct portfolios that may have different attributes across the two dimensions of liquidity

and flow risk by sorting on the level of illiquidity and then by predicted flow beta. To raise

the bar of my empirical test, I consider another set of test portfolios, namely 25 size and
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Table 2: Characteristics coefficients for predicted flow beta

This table reports the estimated coefficients of the five characteristics for the predicted flow beta. I run
OLS pooled regressions using all qualified panels of stocks from CRSP and mutual funds from CRSP and
Morningstar from 1992 to 2013. The ending year of the sample varies depending on the year of the portfolio
sort. In this table, I document three different end-years, 2004, 2008, and 2012, all starting from January
1992. The OLS t-statistics is in parenthesis.

Sample Historical Return Cumulative Ownership

ending in Intercept flow beta volatility return by funds

December 2004 2.32 0.11 0.10 -0.02 0.10
(14.00) (7.11) (8.80) (-9.86) (10.37)

December 2008 1.88 0.08 0.13 -0.03 0.10
(12.76) (6.19) (12.53) (-14.36) (13.27)

December 2012 1.80 0.04 0.16 -0.01 0.07
(13.63) (3.56) (17.12) (-5.54) (12.91)

book-to-market portfolios. If the aggregate fund flows are an important component of SDF,

it should price cross-sections that the managers trade actively. Size and book-to-market are

presumably two of the most well-established characteristics that the active mutual funds

have invested in.

25 illiquidity and flow beta portfolios

I form 25 illiquidity and flow beta portfolios at the end of each year using all NYSE and

NYSE American stocks with a beginning-of-year price between $5 and $1000 and with at

least 100 days of both returns and dollar volume in the preceding year. I sort the qualified

stocks to five portfolios based on the illiquidity in the preceding year, ILLIQk,y−1. I compute

the annual illiquidity, ILLIQk,y−1, as the ratio of daily absolute returns over dollar volume

of security k averaged over the previous year y−1.17 In each of the five illiquidity portfolios,

I then sort the stocks by the predicted flow beta, β̂rf
k,t, as estimated in (28). I exclude stocks

if the annual liquidity measure in the preceding year or the predicted flow beta is missing.

After sorting at the end of each year, I hold the stocks in each portfolio over the next 12

months and take the value-weighted average across stocks within each portfolio to compute

the monthly portfolio returns. I then rebalance at the end of the year and repeat this to link

the time-series of the monthly returns in each portfolio from 1995 to 2013. The year starts

17The annual illiquidity measure is analogous to the monthly illiquidity measure, ILLIQk,t−1, as defined in
(20). The only difference is that it is averaged over the year instead of the month. A sort by the normalized
illiquidity instead of ILLIQk,y−1 results in the same portfolio construction since it adds/multiplies the
identical coefficients to ILLIQk,t−1 for all stocks to compute the normalized illiquidity.
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from 1995 because I need to have at least 36 months of returns to estimate the innovations

in fund flows.

25 size and book-to-market portfolios

I construct 25 size and book-to-market portfolios at the end of each year using the same

qualified stocks as in the 25 illiquidity and flow beta portfolios. I compute the size and

book-to-market ratio following Fama and French (1993).18 If the book value is negative, I

keep it as missing. I exclude stocks from the sort if the size or the book-to-market ratio is

missing.

E. Innovations in portfolio illiquidity and market returns

Following Acharya and Pedersen (2005), I compute the innovations in portfolio illiquidity in

month t , εc
p,t = cp,t − Et−1[cp,t], in the following AR(2) equation. Note that the same date,

t − 1, is used for the market index, PM,t−1, in the right hand side lags to ensure that AR(2)

measures the innovations only in illiquidity, not changes in PM

(0.25 + 0.3ILLIQp,tPM,t−1) = w0 + w1 (0.25 + 0.3ILLIQp,t−1PM,t−1)

+ w2(0.25 + 0.3ILLIQp,t−2PM,t−1) + εc
p,t, (29)

where ILLIQp,t is the value-weighted average of truncated illiquidity19

ILLIQp,t =
∑

k∈p

wk,p,t−1min

(

ILLIQk,t,
30 − 0.25

0.3PM,t−1

)

, (30)

and wk,p,t−1 is the weight of market capitalization in month t − 1. Similarly, I compute the

innovations in market illiquidity by εc
M,t ≡ cM,t − Et−1[cM,t] from an AR(2) equation that

is analogous to (29) but using ILLIQM,t instead of ILLIQp,t. I compute ILLIQM,t by the

value-weighted average of truncated illiquidity as in (30) but taking the average over all

18The size of a security is the market capitalization of the stock in December of the preceding year. For
a company with non-missing total asset and total liability in Compustat, I compute the book value of a
security as total asset minus total liability plus investment tax credit (if available) plus deferred taxes (if
available) minus preferred stock (redemption value). If preferred stock (redemption value) is missing, I use
preferred stock (liquidating value) or preferred/preference stock (capital), in order.

19The truncated illiquidity ensures that the normalized illiquidity for portfolio p, cp,t = 0.25 +
0.3ILLIQp,tPM,t−1, ranges between the minimum of 0.25% and the maximum of 30%.
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stocks in the market instead of within each portfolio.

I construct the market portfolio returns by the value-weighted average of all stock returns

with a beginning-of-month price between $5 and $1000 and with at least 15 days of both

returns and dollar volume in the month. I compute the innovations in market returns by

εr
M,t ≡ rM,t−Et−1[rM,t] from the AR(2) equation with additional control variables: volatility

of the market returns, average market illiquidity, log of the average dollar volume, and log of

the average turnover, all measured over the past 6-month rolling period (from month t − 6

to t−1), and log of the market capitalization in month t−1. All the market-level predictors

are computed by value-weighted average.

IV. Portfolio characteristics

Flow and liquidity risk

For each portfolio p of the 25 illiquidity and flow beta portfolios, I utilize all empirical

measures that I computed in the previous section to compute the two risk factors, βFLOW
p

and βMKTc
p as derived in the asset pricing model in (16) using all the data from 1995 to 2013.

Table 3 reports the cross-sectional distributions of the βFLOW and βMKTc across the 25

illiquidity and flow beta portfolios. βFLOW has a wide spread across the portfolios ranging

from 3.43 to 6.11, with t-statistics significant at the 1% level in all 25 portfolios. This

alleviates concerns about unreliable estimates of risk premia when covariances with the

portfolio returns are small (see Bryzgalova (2016)). βFLOW tends to increase across the flow

beta sort, although the pattern in the middle is not as strong as in the low/high flow beta

portfolios.

For portfolio characteristics, I take the value-weighted average across the stocks in each

portfolio p ∈ {1, 2, 3, ..., 25} of monthly excess returns, normalized illiquidity cost (ck,t),

monthly turnovers, volatility of daily returns during month t, and the equal-weighted average

of size at month t. The monthly turnover of a stock k in month t is the total number of

shares traded during the month t over the average shares outstanding during the month t

using the daily CRSP trade volume and the shares outstanding.

Monthly excess returns over the risk-free rate are higher for high flow beta stocks com-
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Table 3: 25 illiquidity and flow beta portfolios

This table shows the characteristics of 25 illiquidity and predicted flow beta portfolios formed at the end of each
year by the preceding year’s illiqudity and predicted flow beta using CRSP stocks and CRSP and Morningstar
mutual funds data from 1995-2013. βFLOW is the flow risk net of liquidity cost and βMKTc is the market risk net
of liquidity cost. Monthly excess return is the time-series average of the value-weighted portfolio returns over the
monthly 30d T-bill rate.

βFLOW

Flow beta

Low 2 3 4 High 5-1

Liquid 3.43 3.92 4.51 4.12 4.37 0.94
2 4.09 4.77 5.41 4.87 5.57 1.48
3 3.89 5.26 5.45 5.86 5.8 1.91
4 3.53 5.14 5.55 6.11 6.09 2.56
Illiquid 4.09 5.05 5.4 5.42 5.93 1.84

t(βFLOW )

Flow beta

Low 2 3 4 High 5-1

Liquid 4.19 4.9 5.4 4.05 3.74 1.77
2 5.33 5.2 5.02 4.09 4.71 2.02
3 4.94 5.31 5.19 4.87 4.19 1.97
4 4.01 4.83 4.65 4.83 4.38 2.86
Illiquid 4.67 4.27 4.1 3.83 3.85 1.38

βMKTc

Flow beta

Low 2 3 4 High 5-1

Liquid 0.71 0.74 0.85 0.97 1.16 0.45
2 0.78 1.01 1.1 1.21 1.35 0.56
3 0.75 1.03 1.15 1.19 1.4 0.65
4 0.77 1.01 1.15 1.24 1.27 0.49
Illiquid 0.79 0.98 1.12 1.15 1.36 0.58

t(βMKTc)

Flow beta

Low 2 3 4 High 5-1

Liquid 18.93 23.68 31.09 31.19 23.27 6.81
2 17.83 24.95 24.88 24.26 21.19 7.52
3 18.13 21.52 21.84 20.64 18.88 9.12
4 15.92 17.38 18.33 18.35 15.22 6.43
Illiquid 14.38 12.68 15.63 14.04 14.22 6.41

Monthly excess returns (%)

Flow beta

Low 2 3 4 High 5-1

Liquid 0.33 0.37 0.52 0.49 0.51 0.18
2 0.63 0.66 0.76 0.79 0.67 0.04
3 0.6 0.79 0.87 0.69 0.73 0.13
4 0.65 0.84 0.95 1.13 1.24 0.59
Illiquid 0.6 0.94 1.24 0.92 1.47 0.87

t(excess returns)

Flow beta

Low 2 3 4 High 5-1

Liquid 1.2 1.23 1.63 1.3 1.03 0.46
2 2.07 1.85 1.8 1.73 1.33 0.12
3 1.93 2.01 2.12 1.46 1.35 0.35
4 2.06 2.03 2.07 2.28 2.33 1.64
Illiquid 1.71 2.07 2.52 1.72 2.57 2.06

pared to low flow beta stocks. The difference is particularly notable for illiquid stocks. For

the most illiquid stocks, high flow beta stocks on average have 0.87% (10.44% annually)

higher excess monthly returns than low flow beta stocks.

Consistent with the liquidity literature, the illiquidity cost increases exponentially for

the most illiquid stocks. More interestingly, for the most illiquid stocks, the illiquidity cost

reduces from 1.77% to 1.19% as flow beta increases while its average monthly excess return

increases from 0.6% to 1.47%. This implies that, for illiquid stocks, the spread of the average

returns across flow beta cannot be explained by the illiquidity cost alone. In Section IV, I

formally test if the differences in βFLOW explain the spread of the average excess returns

across 25 illiquidity and flow beta portfolios.
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Table 3: continued

I take time-series averages of the value-weighted normalized illiquidity cost (ck,t), value-weighted monthly turnovers,
value-weighted volatility of daily returns, and equal-weighted size. The monthly turnover is the total number of
shares traded during the month over the average shares outstanding during the month using the daily CRSP trade
volume and shares outstanding.

Normalized illiquidity cost (%)

Flow beta

Low 2 3 4 High

Liquid 0.25 0.25 0.25 0.25 0.25
2 0.26 0.26 0.26 0.26 0.26
3 0.28 0.28 0.29 0.28 0.29
4 0.39 0.39 0.39 0.38 0.37
Illiquid 1.77 1.6 1.6 1.41 1.19

Monthly turnovers (%)

Flow beta

Low 2 3 4 High

Liquid 11.26 9.58 11.16 11.9 17.9
2 13.07 16.07 19.13 21.98 25.84
3 11.48 13.19 16.68 19.6 24.21
4 9.64 11.53 14.37 16.12 18.34
Illiquid 4.92 8.12 8.88 9.58 12.62

Monthly volatility of daily returns (%)

Flow beta

Low 2 3 4 High

Liquid 1.6 1.62 1.74 1.91 2.29
2 1.63 1.89 2.14 2.37 2.75
3 1.74 2 2.26 2.52 2.91
4 1.93 2.27 2.43 2.67 2.99
Illiquid 2 2.49 2.66 2.82 3.16

Size (bil$)

Flow beta

Low 2 3 4 High

Liquid 48.02 32.29 25.19 17.86 15.62
2 3.67 3.7 3.48 3.3 3.02
3 1.86 1.59 1.51 1.45 1.38
4 0.84 0.8 0.71 0.69 0.7
Illiquid 0.24 0.23 0.24 0.24 0.26

The turnover provides economically useful information on liquidating costs. Note that the

normalized liquidating cost, cp,t, is the average per-trade selling cost that investors pay only

when they actually trade. If the actual security holding period is longer than the monthly

estimation period of my empirical works, investors should not incur the full liquidating cost

every month. In order to proxy the unknown security holding period, I use the inverse of the

average turnover. The turnover reveals the percentage of shares outstanding traded during

the month. In my sample, the average turnover is 0.14 using all qualified stocks in the

portfolio formation. This implies that it takes on average 7.14 = 1/0.14 months to trade the

shares outstanding once. The asset pricing model assumes the security holding period is one

month for all investors in (16). In order to adjust the liquidating cost proportionately to

the holding period, I divide the liquidating cost by the average holding period in the asset

pricing model

E [rp,t − rf,t] = α +
1

7.14
E [cp,t] + λFLOW βFLOW

p + λMKT βMKTc
p . (31)

When I formally test the asset pricing model in Section V, I also model the unknown holding
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period as a free parameter, τ , and have it estimated in the data

E [rp,t − rf,t] = α + τE [cp,t] + λFLOW βFLOW
p + λMKT βMKTc

p . (32)

Additional characteristics in the 25 illiquidity and flow beta portfolios reveal that high

flow beta stocks are in general more volatile than low flow beta stocks. The size distribution

across the flow beta does not have a very clear pattern in all levels of illiquidity.

V. Main Empirical Results

In this section, I formally test if the differential sensitivities of return and liquidity cost

with the aggregate fund flow explain the average returns cross-sectionally. The main focus

is on the price of risk for the flow beta. In Section V.A, I estimate the price of risks in the

flow and liquidity asset pricing model using the 50 test portfolios simultaneously: 25 size

and book-to-market portfolios and 25 illiquidity and flow beta portfolios. In Section V.B, I

estimate the price of risks for the 25 size and book-to-market portfolios and the 25 illiquidity

and flow beta portfolios separately.

A. Cross-sectional analysis: joint test with 50 portfolios

Table 4 documents the results of the baseline case of the flow and liquidity model as derived

in Section II (Model 1, Model 2), other specifications of the baseline model (Model 3 - Model

6), the baseline model controlling for the Fama-French three factors with a momentum 20

(Model 7).

Model 1 and Model 2 are the direct test of the flow and liquidity asset pricing model

derived in Section II. In Model 1, I calibrate the parameter τ to be 0.14 ≈ 1/7.14 using the

sample average turnover (0.14) to approximate the security holding period (7.14 months) as

discussed in the previous section. The price of risk for the βFLOW is estimated to be 0.2

and statistically significant at the 1% level while the risk price for the βMKTc is 0.01 with

t-statistics close to zero. In Model 2, I test the asset pricing model with a free parameter

τ in front of the per-trading selling cost, E [cp,t], and have it estimated in the data. The

20The market returns (MKT), size mimicking portfolio returns (SIZE), book-to-market mimicking port-
folio returns (HML), and momentum mimicking returns (MOM) come from Kenneth French’s data library.
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Table 4: Joint test, 50 portfolios on size, book-to-market, illiquidity and flow beta

Using 50 monthly test portfolios, this table reports the estimated price of risks of various specifications from
the following baseline cross-sectional asset pricing model

E
[
rp,t − rf

t − τcp,t

]
= α + λFLOW βFLOW

p + λMKT βMKTc
p ,

where βFLOW
p is the co-movement of returns net of liquidity costs with aggregate innovations in fund flows

and βMKTc
p is the co-movement of returns net of liquidity costs with the market returns net of market

liquidity costs of portfolio p ∈ {1, 2, ..., 50}. To adjust the liquidating cost proportionately to the monthly
estimation period, I use the calibrated value of τ=0.14 or I estimate τ as a free parameter. The market
returns (MKT), size mimicking portfolio returns (SMB), book-to-market mimicking portfolio returns (HML),
and momentum mimicking returns (MOM) come from Kenneth French’s data library. The sample period is
from 1995 to 2013. The cross-sectional t-statistics or adjusted R2 is in parentheses.

Model Intercept E [ct] βFLOW βMKTc MKT SMB HML MOM R2

1 -0.29 0.14 0.2*** 0.01 0.55
(-1.68) (–) (4.33) (-0.02) (0.53)

2 -0.27 0.22*** 0.18*** 0.04 0.69
(-1.61) (4.82) (3.8) (0.18) (0.66)

3 -0.29 0.14 0.2*** 0.55
(-1.77) (–) (7.68) (0.54)

4 -0.26 0.22*** 0.18*** 0.69
(-1.78) (4.88) (6.93) (0.67)

5 -0.22 0.14 0.86*** 0.37
(-1.25) (–) (5.33) (0.36)

6 -0.21 0.27*** 0.79*** 0.59
(-1.24) (5.34) (5.04) (0.57)

7 0.06 0.14 0.12** -0.06 0.26** 0.16 0.71 0.69
(0.32) (–) (2.03) (-0.25) (2.07) (1.1) (1.79) (0.66)

free parameter τ is estimated to be 0.22 (security holding period of about 5 months) in the

cross-sectional regression in Model 2 and is statistically significant at the 1% level. The

price of risk for the βFLOW is estimated to be similar between Model 1 (0.2) and Model 2

(0.18) and are both statistically significant at the 1% level. The price of risk for the βMKTc

is positive but insignificant in both models.

In Model 3 and 4, I estimate an one-factor model with only βFLOW with calibrated τ and

with τ as a free parameter, respectively. The estimation results indicate that the model fits

in Model 1 and Model 2 are fully captured by the βFLOW : The R2 of the one-factor model

with βFLOW alone is identical to that of the two-factor model. Both the price of risk of

βFLOW and τ are estimated precisely with very small standard errors and the price of risks

are almost identical through Model 1 to Model 4. Model 5 and Model 6 present a case of an

one-factor model with only βMKTc. Although the price of risk is significant for βMKTc, the

difference between the estimated τ and the calibrated τ widens and the overall fit declines
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from 54% in the βFLOW -only model in Model 3 to 39% in the βMKTc-only model in Model

5.

I control for the three Fama-French three factors and a momentum factor in Model 7.

Since βMKTc and MKT are highly correlated I include either one of the market factors in

the test. The estimation results remain almost identical regardless of which market factor

I include.21 I use the calibrated value for τ to alleviate concerns about overfitting with too

many factors in the test. The price of risk for the βFLOW is 0.12 and is statistically significant

at the 5% level.

The flow risk premium is estimated to be sizable. From Table 3, βFLOW ranges from 3.43

to 6.11 in the 25 illiquidity and flow beta portfolios. Using the price of risk of 0.20 in Model

1, this implies that, conditional on the liquidity risk, the monthly risk premium attributed

to the flow risk is on average 0.44% (5.28% annually) for the two most illiquid portfolios

and on average 0.24% (2.90% annually) for the two most liquid portfolios. After controlling

for the Fama-French three factors and a momentum factor, the annual flow risk premium is

3.17% for the two most illiquid portfolios and 1.74% for the two most liquid portfolios.

Figure 2 confirms the overall performance of the flow and liquidity asset pricing model. It

shows that the realized monthly excess returns of the 50 test portfolios and the fitted monthly

excess returns from the asset pricing model line up well along the 45 degree line. The fitted

returns are predicted using the price of risk estimated from the joint cross-sectional asset

pricing test in Table 4 Model 2. The label IiFj refers to the portfolio of stocks with illiquidity

in i quintile and flow beta in j quintile for i, j ∈ {1, 2, ..., 5}. Similarly, SiBj indicates the

portfolio of stocks with size in i quintile and book-to-market in j quintile for i, j ∈ {1, 2, ..., 5}.

The flow and liquidity asset pricing model prices most of the 50 portfolio returns reasonably

well, however, with varying degrees of pricing errors across the 50 portfolios.

B. Cross-sectional analysis: 25 portfolios separately

Following the joint test, I examine the flow and liquidity model using the 25 size and book-to-

market portfolios and the 25 illiquidity and flow beta portfolios separately in Table 6. I find

that not only the price of risk for the flow beta is significantly positive, but also the magnitude

21The results are not reported, but available upon request.
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Figure 2: Cross-sectional fit using 50 portfolios

The plot shows the cross-sectional fit of the flow and liquidity asset pricing model using 50 test
portfolios simultaneously from 1995-2013. In each portfolio p ∈ {1, 2, ..., 50}, I take the value-weighted
average of excess stock returns over the 30d T-bill rate across stocks and then take the time-series
average of the portfolio returns. I compute the fitted monthly excess returns using the estimated
price of risks in the two-factor asset pricing model with the free parameter τ estimated in the data.
The label IiFj refers to the portfolio of stocks with illiquidity in i quintile and flow beta in j quintile
for i, j ∈ {1, 2, ..., 5}. Similarly, SiBj indicates the portfolio of stocks with size in i quintile and
book-to-market in j quintile for i, j ∈ {1, 2, ..., 5}.

is very similar across the different portfolios and across different model specifications. This is

empirically a hurdle to show that one stochastic discount factor prices across different assets.

My model shows the consistent result, which further lends support to the prediction that the

aggregate innovations in fund flows are an important component of the stochastic discount

factor in the U.S. equity market in the recent sample period. In contrast, the price of risk

for the market beta is statistically insignificant and flips sign across the different portfolios.

For the 25 size and book-to-market portfolios in Panel A, the price of risk for βFLOW

is estimated to be 0.19, compared to 0.2 in the joint test and 0.21 in 25 illiquidity and

flow beta portfolios, with the calibrated value of 0.14 for τ in Model 1. Having τ as a free

parameter changes the estimated value of the price of risk for βFLOW to 0.16 in Model 2,

with τ estimated to be 0.23. In Model 3 and Model 4, when I drop βMKTc and keep only

βFLOW in the asset pricing model, the overall fit, price of risk, intercept and τ remain in
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Table 5: Separate asset pricing tests

Using 25 monthly test portfolios separately, this table reports the estimated price of risks of various specifi-
cations from the following baseline cross-sectional asset pricing model

E
[
rp,t − rf

t − τcp,t

]
= α + λFLOW βFLOW

p + λMKT βMKTc
p ,

where βFLOW
p is the co-movement of returns net of liquidity costs with aggregate innovations in fund flows

and βMKTc
p is the co-movement of returns net of liquidity costs with the market returns net of market

liquidity costs of portfolio p ∈ {1, 2, ..., 25}. To adjust the liquidating cost proportionately to the monthly
estimation period, I use the calibrated value of τ=0.14 or I estimate τ as a free parameter. The market
returns (MKT), size mimicking portfolio returns (SMB), book-to-market mimicking portfolio returns (HML),
and momentum mimicking returns (MOM) come from Kenneth French’s data library. The sample period is
from 1995 to 2013. The cross-sectional t-statistics or adjusted R2 is in parentheses.

Panel A: 25 size and book-to-market portfolios

Model Intercept E [cp
t ] βFLOW βMKTc MKT SMB HML MOM R2

1 -0.24 0.14 0.19*** 0.58
(-1.37) (–) (5.63) (0.56)

2 -0.16 0.23*** 0.16*** 0.75
(-0.91) (3.99) (4.51) (0.72)

3 -0.39 0.14 0.16** 0.28 0.59
(-1.31) (–) (2.56) (0.61) (0.55)

4 -0.27 0.22*** 0.14** 0.2 0.75
(-0.89) (3.83) (2.35) (0.43) (0.71)

5 0.24 0.04 0.04 0.14 0.33 -0.15 0.7
(0.6) (0.59) (0.09) (0.66) (1.68) (-0.21) (0.62)

Panel B: 25 illiquidity and flow beta portfolios

Model Intercept E [cp
t ] βFLOW βMKTc MKT SMB HML MOM R2

1 -0.35 0.14 0.21*** 0.53
(-1.69) (–) (5.13) (0.51)

2 -0.37 0.22*** 0.21*** 0.64
(-1.76) (3.00) (4.95) (0.6)

3 -0.34 0.14 0.27*** -0.26 0.54
(-1.59) (–) (3.07) (-0.71) (0.5)

4 -0.35 0.22*** 0.25*** -0.2 0.64
(-1.66) (2.83) (2.8) (-0.54) (0.59)

5 -0.03 0.21** -0.05 0.3 0.04 1.44** 0.67
(-0.12) (2.24) (-1.13) (1.51) (0.16) (2.18) (0.6)

similar range, which resembles the results in the joint test. In the 25 illiquidity and flow beta

portfolios in Panel B, I observe very similar results. Across the different model specifications

from Model 1 to Model 4, the estimated value of the price of risk for βFLOW , τ , and intercept

remain similar with the results in the 25 size and book-to-market portfolios.

In Model 5 with 25 size and book-to-market portfolios, I control for the Fama-French

three factors and a momentum factor. SMB and HML factors are designed to explain size
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and book-to-market portfolio returns. If flow beta explains 25 size and book-to-market

portfolios because mutual fund managers actively trade with the risk profiles then flow beta

should be correlated with SMB and HML. That is what happens in Model 5. When I have

flow beta and SMB and HML together in the model, they are multicollineared each other,

and none of the factors turn out to be statistically significant even though the overall fit of

the model is quite high at 0.67. However, in 25 illiquidity and flow beta portfolios, when I

control for the Fama-French three factors and a momentum factor in Model 5, price of risk

of βFLOW is statistically significant at 5% level.

VI. Conclusion

I propose and test an equilibrium asset pricing model that provides a framework to un-

derstand how mutual fund managers and direct investors affect asset prices when both are

concerned about the liquidating cost. Fund managers, in particular, care about the liquidat-

ing cost because unexpected large outflows may force them to liquidate their asset holdings.

The model implies that expected returns are driven by two factors: 1) flow beta, i.e., co-

movement of net returns (net of liquidity costs) with the aggregate unexpected fund flows

and 2) liquidity-adjusted market beta, i.e., co-movement of net returns with the net market

returns. I find the flow beta prices 50 size, book-to-market, liquidity, flow beta simultane-

ously and separately. I find the price of risk of the flow beta is positively significant and the

magnitude is similar across the portfolios and the overall fit is purely captured by a single-

factor model of flow beta. This lends further support to the prediction that the aggregate

innovations in fund flows are an important component of the stochastic discount factor. For

illiquid stocks, I find that the flow beta risk premium is about twice that for liquid stocks.

The framework tested in this paper suggests that other illiquid asset classes in which

delegating managers actively trade could be similarly explored. High yield bond funds and

emerging market sovereign bond funds are a few examples that are subject to fund flow risk

and liquidity risk. What is more interesting in bond asset class is that the ownership is more

concentrated in the financial intermediaries compared to equity. It would be important to

understand at how heterogeneous intermediaries interact each other especially when a group

of intermediaries face an unexpected and large funding shock.
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More broadly, it would be interesting to explore how the interaction of capital flow risk

and liquidity risk affect asset prices and real economy in particular in the emerging market

economy. Sudden outflows of foreign debt have repeatedly figured in active discussions

among economists, policy makers and money managers in the past decades in attempt to

understand its mechanism during negative liquidity episodes. Foreign capital flows have

increased at an unprecedented rate in the past two decades and the high level of foreign debt

outstanding across countries once again raises concerns over potential pain from the foreign

debt outflows.
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Appendix A. Flow of Funds Account

In this Appendix, I plot the share of the U.S. common equity market held by open-end

mutual funds from 1980 to 2017. The data is from the Federal Reserve Board Flow of Funds

Accounts L.223 (A) Corporate Equities from the Z.1 statistical release on 20 September 2018.

Table L.223 reports the dollar value of the corporate equity held by various type of investors,

including households and nonprofits, mutual funds, banks, and insurance companies.

In the Flow of Funds, household and nonprofit holdings is computed as a residual. House-

hold and nonprofit holdings includes not only the common equity held by the nonprofit sector,

but also preferred stocks and closely held corporations.

Similar to Stambaugh (2014), I estimate the value of the direct household holdings of

common equity by using the ratio of direct household holdings to the total household and

nonprofit holdings in 2007 from French (2008). I extrapolate the ratio to extend the estimate

of the direct household holdings to 2017.

Figure A1: Holdings of the U.S. common equity market
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Appendix B. Proofs

1. Proof of proposition 1

I start from fund manager i’s portfolio choice problem

max
xi,t

Et

[
xT

i,tr
c
t+1 + fi,t+1

]
−

bI

2
V art

[
xT

i,tr
c
t+1 + fi,t+1

]
− λ

(
xT

i,t1 − 1
)
. (A.1)

Substituting the fund flows in (5) to (A.1), manager i’s maximization problem becomes

max
xi,t

Et

[
α0 + {(1 + α1)xi,t − α1xM,t}

T rc
t+1 + ηi,t+1

]

−
bI

2
V art

[
{(1 + α1)xi,t − α1xM,t}

T rc
t+1 + ηi,t+1

]
− λ (xi,t1 − 1) . (A.2)

For notational simplicity, I denote

Et ≡ Et

[
rc
t+1

]
K×1,

(A.3)

Σt ≡ V art

[
rc
t+1

]
K×K,

(A.4)

Ci,t ≡ Covt

[
rc
t+1, ηi,t+1

]
K×1.

(A.5)

I rewrite manager i’s problem in a shorter expression after expanding the variance term

max
xi,t

{(1 + α1)xi,t − α1xM,t}
T Et −

bI

2
{(1 + α1)xi,t − α1xM,t}

T Σt {(1 + α1)xi,t − α1xM,t}

− bI {(1 + α1)xi,t − α1xM,t}
T Ci,t −

bI

2
V art[ηi,t+1] − λ

(
xT

i,t1 − 1
)
. (A.6)

The first order condition with respect to xi,t reads

(1 + α1)E − bI(1 + α1)
2Σtxi,t + bIΣt(1 + α1)α1xM,t − bI(1 + α1)Ci,t − λ1 = 0. (A.7)

After arranging the terms, the optimal portfolio weight of fund manager i becomes

x∗
i,t =

α1

1 + α1

xM,t +
1

bI(1 + α1)
Σ−1

t

(

Et −
1

1 + α1

λ1

)

−
1

1 + α1

Σ−1
t Ci,t. (A.8)
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For direct investor j with the portfolio choice problem

max
xj,t

Et

[
xT

j,t

(
rc
t+1 − rf1

)]
−

bJ

2
V art

[
xT

j,t

(
rc
t+1 − rf1

)]
, (A.9)

I take the first order condition and rearrange the terms to get

x∗
j,t =

1

bJ

Σ−1
t (Et − rf1) . (A.10)

I replace x∗
i,t and x∗

j,t in the market clearing condition

I∑

i=1

Ai,tx
∗
i,t +

J∑

j=1

Aj,tx
∗
j,t = AM,txM,t, (A.11)

to have

I∑

i=1

Ai,t

{
α1

1 + α1

xM,t +
1

bI(1 + α1)
Σ−1

t

(

Et −
1

1 + α1

λ1

)

−
1

1 + α1

Σ−1
t Ci,t

}

+
J∑

j=1

Aj,t

{
1

bJ

Σ−1
t (Et − rf1)

}

= AM,txM,t, (A.12)

I pre-multiply by Σt on both sides of the equation

I∑

i=1

α1Ai,t

1 + α1

ΣtxM,t +
I∑

i=1

Ai,t

bI(1 + α1)

(

Et −
1

1 + α1

λ1

)

−
I∑

i=1

Ai,t

1 + α1

Ci,t +
J∑

j=1

Aj,t

bJ

(Et − rf1)

= AM,tΣtxM,t, (A.13)

and rearrange using
∑I

i=1 Ai,t ≡ AI,t,
∑J

j=1 Aj,t ≡ AJ,t, and AM,t ≡ AI,t + AJ,t

(
1

bI(1 + α1)
AI,t +

1

bJ

AJ,t

)

Et (A.14)

=
1

bI(1 + α1)2
AI,tλ1 +

1

bJ

AJ,trf1 + AM,tΣtxM,t −
α1

1 + α1

AI,tΣtxM,t +
1

1 + α1

I∑

i=1

Ai,tCi,t.

I divide both sides by
(

1
bI(1+α1)

AI,t + 1
bJ

AJ,t

)
and restore the original expressions for Et, Σt,
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and Ci,t to get

Et

[
rc
t+1

]
= s01 + s1Covt

[
rc
t+1, η̄t+1

]
+ s2V art

[
rc
t+1

]
xM,t, (A.15)

and I rewrite for each stock k ∈ {1, 2, 3, ..., K}

Et

[
rc
k,t+1

]
= s0 + s1Covt(r

c
k,t+1, r

c
M,t+1) + s2Covt(r

c
k,t+1, η̄t+1), (A.16)

where

η̄t+1 =
I∑

i=1

Ai,t

AI,t

ηi,t+1, (A.17)

s0 = rf

1
bJ

AJ,t

1
bI(1+α1)

AI,t + 1
bJ

AJ,t

+ λ

1
bI(1+α1)2

AI,t

1
bI(1+α1)

AI,t + 1
bJ

AJ,t

, (A.18)

s1 =
AM,t − α1

1+α1
AI,t

1
bI(1+α1)

AI,t + 1
bJ

AJ,t

, s2 =
1

1+α1
AI,t

1
bI(1+α1)

AI,t + 1
bJ

AJ,t

. (A.19)

2. Proof of proposition 2

The partial derivative of s1 in (A.19) with respect to AI,t is

∂s1

∂AI,t

=
− α1

1+α1

(
1

bI(1+α1)
AI,t + 1

bJ
AJ,t

)
−
(
AM,t − α1

1+α1
AI,t

)
1

bI(1+α1)
(

1
bI(1+α1)

AI,t + 1
bJ

AJ,t

)2 (A.20)

=
− α1

bJ (1+α1)
AJ,t − 1

bI(1+α1)
AM,t

(
1

bI(1+α1)
AI,t + 1

bJ
AJ,t

)2 . (A.21)

and the partial derivative of s2 in (A.19) with respect to AI,t is

∂s2

∂AI,t

=

1
1+α1

(
1

bI(1+α1)
AI,t + 1

bJ
AJ,t

)
− 1

1+α1
AI,t

1
bI(1+α1)

(
1

bI(1+α1)
AI,t + 1

bJ
AJ,t

)2 (A.22)

=
1
bJ

AJ,t
(

1
bI(1+α1)

AI,t + 1
bJ

AJ,t

)2 , (A.23)

Under the assumptions that the risk aversion of the fund managers, bI , the risk aversion

of direct investors, bJ , and the flow sensitivity to fund performance are positive, ∂s1

∂AI,t
< 0
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and ∂s2
∂AI,t

> 0.

Appendix C. Procedure for computing predicted flow beta

(i) I re-estimate the aggregate innovations in fund flows using all fund flows and fund

returns available up to month t of the end of each year.

(ii) Using the aggregate innovations in fund flows, I compute the 60-month historical flow

beta at month t using data from t − 60 to t − 1 if at least 36 months of returns are

available. I repeat this for all the past 60-month rolling windows in the earlier part of

the sample as long as a minimum of 36 monthly returns are available. This creates a

monthly time-series of the historical flow betas up to month t − 1 for each security k.

(iii) I construct the 6-month cumulative returns and standard deviation of the monthly

returns at month t using data from month t − 6 to t − 1 for each security k. I repeat

this for all the past 6-month rolling windows in the earlier part of the sample. This

creates a monthly time-series of the historical cumulative returns and return volailities

up to month t − 1 for each security k.

(iv) I keep the time-series of the most recent preceding quarter’s mutual fund ownership

for each security k at month t. This creates a monthly time-series of the lagged mutual

fund ownership up to month t − 1 for each security k.

(iv) I construct Zk
t−1 by joining the times-series of characteristics constructed in steps (ii)-

(iv) and estimate the flow beta coefficients, ψ1 and ψ2, in (27) by running the OLS

pooled time-series cross-sectional regression.

(iv) For the portfolio sort, I use year-end characteristics computed using all data available

up to time t, Zk
t , and use ψ̂1 and ψ̂2 from (iv) to compute the predicted flow beta for

security k as in (28).

Appendix D. Supplementary empirical results
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Table 6: 25 illiquidity and flow beta portfolios

This table shows the characteristics of 25 illiquidity and predicted flow beta portfolios formed at the end of each
year by the preceding year’s illiquidity and predicted flow beta using CRSP stocks and CRSP and Morningstar
mutual funds data from 1995-2013. The data on the three Fama-French factors and momentum are from Kenneth
French’s website.

Fama-French SMB β

Flow beta

Low 2 3 4 High

Liquid -0.07 -0.28 -0.25 -0.28 0.02
2 -0.05 0.09 0.11 0.22 0.41
3 0.23 0.28 0.37 0.35 0.52
4 0.34 0.52 0.53 0.54 0.79
Illiquid 0.32 0.69 0.63 0.84 0.86

t(β)

Flow beta

Low 2 3 4 High

Liquid -1.6 -6.44 -6.87 -7.32 0.42
2 -0.97 1.84 2.05 3.75 6.23
3 4.69 5.18 6.53 5.37 6.4
4 6.55 9.44 8.93 8.44 10.45
Illiquid 5.39 9.67 9.72 11.64 9.17

Fama-French HML β

Flow beta

Low 2 3 4 High

Liquid 0.01 0.12 0.1 0.1 0.11
2 0.39 0.5 0.51 0.52 0.46
3 0.26 0.62 0.61 0.52 0.65
4 0.45 0.65 0.8 0.84 0.53
Illiquid 0.51 0.78 0.82 0.78 0.8

t(β)

Flow beta

Low 2 3 4 High

Liquid 0.28 2.73 2.51 2.51 1.76
2 6.61 9.53 8.91 8.32 6.58
3 5.07 10.94 10.11 7.41 7.58
4 8.16 10.96 12.77 12.36 6.62
Illiquid 8.13 10.25 12.04 10.21 8.01

MOM β

Flow beta

Low 2 3 4 High

Liquid -0.01 0.03 -0.03 -0.02 0.01
2 -0.08 -0.08 -0.02 0.01 -0.07
3 0.02 -0.08 -0.04 -0.03 -0.09
4 0.08 -0.03 -0.08 -0.06 0
Illiquid -0.1 -0.16 -0.06 -0.01 0.02

t(β)

Flow beta

Low 2 3 4 High

Liquid -0.18 0.93 -1.13 -0.66 0.24
2 -2.38 -2.45 -0.65 0.31 -1.61
3 0.67 -2.28 -0.97 -0.74 -1.85
4 2.45 -0.92 -2.17 -1.4 -0.1
Illiquid -2.83 -3.71 -1.39 -0.17 0.35

ILLIQ β

Flow beta

Low 2 3 4 High

Liquid 0.08 0.03 0.04 0.02 0.24
2 0.22 0.38 0.42 0.52 0.62
3 0.3 0.49 0.58 0.59 0.78
4 0.45 0.62 0.71 0.76 0.85
Illiquid 0.5 0.84 0.86 0.97 1.07

t(β)

Flow beta

Low 2 3 4 High

Liquid 1.37 0.48 0.6 0.23 2.56
2 3.22 4.94 4.97 5.7 5.91
3 4.78 6.12 6.78 6.42 7.12
4 6.99 7.72 8.12 8.1 8.22
Illiquid 7.49 10.41 10.35 11 9.92
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Appendix E. Merging CRSP and Morningstar mutual fund datasets

1. Raw CRSP database clean-up

The CRSP Mutual Fund data comes directly from the WRDS server in SAS data format. I

use monthly tna ret nav as the main base file of the CRSP database that contains monthly

fund returns, total net assets, and other fund characteristics from January 1991 to December

2013, and merge in other CRSP data files to prepare for merging with the Morningstar

database. I delete observations when both monthly fund returns and total net assets are

missing. Then, crsp fundno uniquely identifies each share class, and a pair of crsp fundno

and month uniquely identifies each observation in the CRSP database. The number of

observations is 5,191,473 and there are 54,158 unique fund share classes, i.e., 54,158 unique

crsp fundno. I clean up the raw CRSP database in the order presented below:

Merge and check tickers

I merge in historical tickers from fund hdr hist and forward- and backward-fill the tickers

within each crsp fundno. If a ticker is missing, I then merge in another file, fund hdr, which

keeps the most recent ticker for each crsp fundno, and I replace the missing tickers by the

most recent ticker.

1. I check if a crsp fundno has multiple tickers in a given month. There is no combination

of crsp fundno and month that has different tickers in the CRSP database.

2. I check if a crsp fundno has multiple tickers over the entire sample period. There

are 2,387 crsp fundnos that have time-varying tickers over the sample period. In this

case, I use the last (latest) ticker per crsp fundno following Pastor, Stambaugh, Taylor

(2015), PST(2015) hereafter.

3. Conversely, I check if a ticker has multiple crsp fundnos in a given month. There are

35,051 combinations of ticker and month that correspond to more than one crsp fundno.

In this case, as in PST (2015), I replace the tickers with missing.

4. I check if a ticker has multiple crsp fundnos over the entire sample period. There are
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2,430 tickers that have multiple crsp fundnos. I take care of these tickers later in the

merging algorithm.

Merge and check CUSIPs

Similary, I merge in historical CUSIPs from fund hdr hist and forward- and backward-

fill the CUSIPs within each crsp fundno. If a CUSIP is missing, I then merge in another

file, fund hdr, which keeps the most recent CUSIP for each crsp fundno, and I replace the

missing CUSIPs with the most recent CUSIP.

1. I check if a crsp fundno has multiple CUSIPs in a given month. There is no combination

of crsp fundno and month that has different CUSIPs in the CRSP database.

2. I check if a crsp fundno has multiple CUSIPs over the entire sample period. There

are 8,802 crsp fundnos that have time-varying CUSIPs over the sample period. In this

case, I use the last (latest) CUSIP per crsp fundno following PST (2015).

3. Conversely, I check if a CUSIP has multiple crsp fundnos in a given month. There

are 12,554 combinations of CUSIP and month that correspond to more than one

crsp fundno. In this case, as in PST (2015), I change the CUSIPs to missing.

4. I check if a CUSIP has multiple crsp fundnos over the entire sample period. There are

49 CUSIPs that have multiple crsp fundnos. I take care of these CUSIPs later in the

merging algorithm.

After merging tickers and CUSIPs, 89% of the observations have tickers and 95% of the

observations have CUSIPs out of the total 5,191,473 observations in the CRSP dataset.

Check reversal

In order to prevent possible decimal-place mistakes, I check for extreme reversal patterns in

the monthly total net assets following PST (2015). I first compute the proportional changes

in total net assets, dtna = (mtna-lag tna)/lag tna, and create a reversal variable, rev =

(lead tna-tna)/(tna-lag tna). The reversal variable would be -1 if there is a decimal mistake,

e.g., 20m, 2m, 20m. If abs(dtna)>=0.5, -1.25<=rev<=-0.75, and lag tna>=10mil, I change
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total net assets to missing. This changes 2,457 observations in the CRSP dataset to have

missing total net assets due to the reversal in the total net assets.

2. Raw Morningstar database clean-up

I download monthly fund returns, total net assets, and other fund characteristics that span

from January 1991 to December 2013 from Morningstar Direct. I delete observations when

both fund returns and total net assets are missing. I exclude observations with share class

type “Load Waived” because this share class type is open to only certain investors; they

never have a CUSIP; tickers always end with“.lw’, which do not match with CRSP; and

total net assets are all missing. Then, secid uniquely identifies each share class, and a pair

of secid and month uniquely identifies each observation in the Morningstar database. The

number of observations is 5,547,782 and there are 46,351 unique fund share classes, i.e.,

46,351 unique secid. I clean up the raw CRSP database in the order presented below:

Check tickers

1. I check if a secid has multiple tickers in a given month. There is no combination of

secid and month that has different tickers in the Morningstar database.

2. I check if a secid has multiple tickers over the entire sample period. There is no

secid that has time-varying tickers over the sample period: either a secid never has

a ticker over the entire sample period or a secid has the same ticker over the entire

sample period without any missing tickers. Therefore, there is no need to forward- and

backward-fill the tickers as I did for the CRSP data.

3. I check if a ticker has multiple secids in a given month. There are 2,152 combinations

of ticker and month (30 unique tickers) that correspond to more than one secid. In

this case, as in PST (2015), I change the tickers to missing.

4. I check if a ticker has multiple secids over the entire sample period. There are 32 tickers

that correspond to multiple secids over the entire sample period. I take care of these

tickers later in the merging algorithm.
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Check CUSIPs

1. I check if a secid has multiple CUSIPs in a given month. There is no combination of

secid and month that has different CUSIPs in the Morningstar database.

2. I check if a secid has multiple CUSIPs over the entire sample period. There is no

secid that has time-varying CUSIPs over the sample period: either a secid never has

a CUSIP over the entire sample period or a secid has the same CUSIP over the entire

sample period without any missing CUSIPs. Therefore, there is no need to forward-

and backward-fill the CUSIPs as I did for the CRSP data.

3. Conversely, I check if a CUSIP has multiple secids in a given month. There are 4,039

combinations of CUSIP and month (63 unique CUSIPs) that correspond to more than

one secid. In this case, as in PST (2015), I change the CUSIPs to missing.

4. I check if a CUSIP has multiple secids over the entire sample period. There are 3

CUSIPs that have multiple secids. I take care of these CUSIPs later in the merging

algorithm.

After merging tickers and CUSIPs, 84% of the observations have tickers and 98% of the

observations have CUSIPs out of the total 5,547,782 observations in the Morningstar dataset.

Check reversal

In order to prevent possible decimal-place mistakes, I check for extreme reversal patterns in

the monthly total net assets following PST (2015). I first compute the proportional changes

in total net assets, dtna = (mtna-lag tna)/lag tna, and create a reversal variable, rev =

(lead tna-tna)/(tna-lag tna). The reversal variable would be -1 if there is a decimal mistake,

e.g., 20m, 2m, 20m. If abs(dtna)>=0.5, -1.25<=rev<=-0.75, and lag tna>=10mil, I change

total net assets to missing. This changes 1,011 observations in the Morningstar dataset to

have missing total net assets due to the reversal in the total net assets.
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3. Complete match between CRSP and Morningstar

Following PST (2015), I define a fund as completely matched if all share classes belonging to

the fund are well matched. I identify a fund by fundid in MS and a share class by secid and

crsp fundno. Each share class is well matched if and only if 1) the 60th percentile (over the

available sample period) of the absolute value of the difference between the CRSP and MS

monthly returns is less than 5 basis points and 2) the 60th percentile of the absolute value

of the difference between the CRSP and MS monthly total net assets is less than $100,000.

Well match in the merge by ticker

In order to find a mapping between secid and crsp fundno whose share classses are well

matched, I first merge CRSP and Morningstar by ticker and month. As a result, 3,341,636

observations have both crsp fundno and secid, which makes up 65% of the 5,191,473 CRSP

observations and 60% of the 5,547,782 MS observations. After the merge, I identify the well

matched share classes based on the differences in returns and total net assets across two

different databases. There are 28,871 well-matched share classes (3,211,356 observations),

which amounts to 53% of the 54,158 CRSP share classes and 62% of the 46,351 MS share

classes.

Well match in the merge by CUSIP

I then use CUSIP to merge CRSP and MS to supplement the mapping between secid and

crsp fundno whose share classes are well matched. After the merge by CUSIP, 3,802,794

observations have both crsp fundno and secid, which makes up 73% of the 5,191,473 CRSP

observations and 69% of the 5,547,782 MS observations. After the merge, I identify the well

matched share classes based on the differences in returns and total net assets across two

different databases. There are 34,447 well-matched share classes (3,564,345 observations),

which amounts to 64% of the 54,158 CRSP share classes and 74% of the 46,351 MS share

classes.
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Complete match

I combine the two mappings of secid and crsp fundno that I separately identified from the

ticker merge and the CUSIP merge, and then I merge in the combined mapping to the

MS database to identify completely matched funds. I find that 35,883 share classes are well

matched (66% of the 54,158 CRSP share classes and 77% of the 46,351 MS share classes) and

9,521 funds (61% of the 15,504 MS funds) are completely matched. Among the remaining,

2,208 funds are partially matched observations (15% of the 15,504 MS funds): they have one

or more share classes that are not well matched in a given fund. The remaining 3,775 funds

(24% of the 15,504 MS funds) never have a well matched share class.

4. Merge CRSP and Morningstar

I keep only the completely matched funds in CRSP and in MS. Following PST (2015), I use

CRSP as a base master file and merge in MS with only a complete match. As a result, it

contains 2,865,094 observations (9,521 funds and 27,980 share classes) compared to 5,191,473

CRSP observations (54,158 share classes) before confining to the completely matched funds.

5. Expense ratios, returns, and total net assets

Expense ratios

I use expense ratios from CRSP because it provides exact the start and end day for each

expense ratio observation whereas MS provides expense ratios over each fiscal year period.

I change negative expense ratios to missing.

Returns

2,812,999 observations (98% of the 2,865,094 completely matched observations) have a re-

turns difference between CRSP and MS of less than 10 basis points and 52,095 observations

(1.8% of 2,865,094 completely matched observations) have a returns difference greater than

a 10 basis points.
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Total net assets

I change total net assets of a share class at a given month to missing if either CRSP or MS

is missing the total net assets of the share class in the month. Also, if the absolute difference

of the total net assets between CRSP and MS is greater than $100,000 and the difference is

bigger than 5% of the total net assets in CRSP, then I change the total net assets to missing.

Other than these, I use the total net assets value from CRSP. 2,791,841 observations (97%

of 2,865,094 completely matched observations) have a total net assets difference of less than

$100,000 and 73,253 observations (2.5% of 2,865,094 completely matched observations) have

a total net assets difference greater than $100,000.

6. Identify active equity funds

Index funds

I identify index funds by 1) indicator variables provided in CRSP and MS and 2) searching for

a keyword in fund names. CRSP provides index fund flag and MS provides enhanced index

and index fund. Index funds in CRSP have index fund flag values that are equal to B

(index-based fund), D (pure index fund), or E (index fund enhanced). In MS, if the value

of enhanced index or index fund is Yes, then the funds are identified as index funds. Lastly,

I search for “index” in the CRSP fund names. Following this procedure, I create a variable

index drop and record 1 if it is an index fund.

Other funds

Morningstar provides two variables that classify funds into different categories: morningstar category

and primary prospectus bchmk. I first forward- and backward-fill morningstar category and

primary prospectus bchmk within each crsp fundno. I then search for a set of keywords in

the two variables to classify the category of the funds. The set of keywords are listed in

each column of the following table. I first create indicator variables bond funds, interna-

tional funds, sector funds, target funds, real estate funds, other non equity that records 1 if

a fund contains any keywords listed in the column. I then create a variable num cat that

sums all the indicator variables.
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Panel A: morningstar category

bond funds international funds sector funds target funds real estate funds other non-equity

bank loan china region commodities broad basket target date 2000-2010 global real estate currency

convertibles diversified emerging mkts communications target date 2011-2015 real estate long/short equity

emerging markets bond diversified pacific/asia consumer cyclical target date 2016-2020 managed futures

high yield bond emerging markets bond consumer defensive target date 2021-2025 market neutral

high yield muni europe stock equity energy target date 2026-2030 multialternative

inflation-protected bond foreign large blend equity precious metals target date 2031-2035 trading-inverse commodities

intermediate government foreign large growth financial target date 2036-2040 trading-inverse debt

intermediate-term bond foreign large value health target date 2041-2045 trading-miscellaneous

long government foreign small/mid blend industrials target date 2046-2050

long-term bond foreign small/mid growth miscellaneous sector target date 2051+

multisector bond foreign small/mid value natural resources

muni california intermediate global real estate technology

muni california long india equity utilities

muni massachusetts japan stock

muni minnesota latin america stock

muni national interm pacific/asia ex-japan stk

muni national long world allocation

muni national short world bond

muni new jersey world stock

muni new york intermediate

muni new york long

muni ohio

muni pennsylvania

muni single state interm

muni single state long

muni single state short

nontraditional bond

short government

short-term bond

ultrashort bond

world bond

Panel B: primary prospectus bchmk

bond funds international funds sector funds target funds real estate funds other non-equity

bond ACWI commodity target property

treasury world reit

govt global

barclay emerging markets

municipal latin america

convertible eafe

investment-grade msci em

consumer price index

t-bill

dollor (As in raw MS)

7. Group subclasses

I aggregate share classes to have a fund-level dataset. At each month, I sum the CRSP total

net assets and MS total net assets across subclasses; I take the tna-weighted average of CRSP

returns, MS returns, CRSP expense ratios, CRSP turnover ratios; I take the maximum of

index drop and num cat. If the maximum of the expense ratios is greater than 4%, I drop

the fund-month.
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8. Other screenings

I drop index funds (index drop=1) and keep only domestic active equity funds (num cat=0).

I keep only fund-month if lagged total net assets adjusted in 2011 dollars is greater than

$15,000,000. I require a fund to have at least 3 years of non-missing fund flows, lagged fund

flows, and fund returns.
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